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Abstract

This paper reports numerical analyses of free vibration of laminated composite plate/shell structures of various shapes,

span-to-thickness ratios, boundary conditions and lay-up sequences. The method is based on a novel four-node

quadrilateral element, namely MISQ20, within the framework of the first-order shear deformation theory (FSDT). The

element is built by incorporating a strain smoothing method into the bilinear four-node quadrilateral finite element where

the strain smoothing operation is based on mesh-free conforming nodal integration. The bending and membrane stiffness

matrices are based on the boundaries of smoothing cells while the shear term is evaluated by 2� 2 Gauss quadrature.

Through several numerical examples, the capability, efficiency and simplicity of the element are demonstrated.

Convergence studies and comparison with other existing solutions in the literature suggest that the present element is

robust, computationally inexpensive and free of locking.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis of natural frequencies of composite plates/shells plays an increasingly important role in the
design of structures in mechanical, civil and aerospace engineering applications. A thorough study of the
dynamic behaviors of these structures is essential in assessing their full potential. Therefore, it is necessary to
develop appropriate models capable of accurately predicting their dynamic characteristics.

Great progress has been made over past decades towards better understanding of the vibration
characteristics of laminated composite plates/shells [1–3]. Due to limited availability of analytic solutions
for practical applications, numerical approximate methods have become the most effective tools. The finite
element method (FEM) is considered to be a very effective and versatile approach for these problems. There is
a vast amount of literature on free vibration analysis of laminated plates/shells which is too large to list here.
Bert [1] and Mohamad [2] have conducted surveys and provided details on the development of the FEMs for
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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modeling and modal analysis of laminated plates/shells. Further extensive references on shells can be found in
the excellent review of Yang et al. [3].

Although the FEM solution is quite effective and versatile, its performance is highly mesh dependent and
badly deteriorates when mesh distortion occurs. On the other hand, the mesh-free methods have become an
alternative approach for problems with complex geometry and boundary conditions. Several mesh-free
methods have been so far proposed for vibration analysis, including the element free Galerkin (EFG) method
[4], the moving least square differential quadrature (MLSDQ) method [5,6], the radial basis function (RBF)
method [7,8] and the reproducing Kernel particle method [9], etc. However, the complex approximation space
of mesh-fee methods increases the computational cost of solving the resultant algebraic equation systems.
Recently, Liu et al. [10,11] proposed a new smoothed finite element method (SFEM) where the strain
smoothing technique of the stabilized conforming nodal integration (SCNI) mesh-free method was
incorporated into the existing FEM for 2D elastic problems. Based on the idea of SFEM, Nguyen-Van
et al. [12] have developed a new locking-free quadrilateral laminated plate element MISQ20 by incorporating
the SCNI into the Bathe-Dvorkin assumed strain plate element [13]. It is found that the MISQ20 element with
SCNI is effective, computationally inexpensive and not sensitive to mesh distortion. It is able to achieve
accurate results even with coarse discretization irrespective of the span-to-thickness ratio and stacking
sequence.

The goal of the present study is to extend the MISQ20 element for analysis of free vibration problems of
laminated plate/shell structures within the framework of the FSDT. Eigenvalue analysis of various composite
plates/shells is performed in order to have a better understanding of their dynamic behaviors associated with
different parameters such as boundary conditions, types of laminates, mesh distortion, fiber orientation, span-
to-thickness ratio, mixed boundaries and modulus ratio.

The paper is outlined as follows. First, a brief review of the finite element formulations for laminated plates
is introduced in Section 2. The description of strain smoothing technique for FEM is derived in Section 3.
Several numerical investigations are carried out in Section 4 to assess the performance of the proposed element
in free vibration analysis. Finally, concluding remarks are made in Section 5.

2. Finite element formulations for laminated plates

In the first-order shear deformation theory (FSDT) [14], the plate kinematics is governed by the midplane
displacement uo; vo;wo and rotation yx, yy as follows:

uðx; y; zÞ ¼ uoðx; yÞ þ zyx,

vðx; y; zÞ ¼ voðx; yÞ þ zyy,

wðx; y; zÞ ¼ woðx; yÞ. (1)

A typical four-node quadrilateral laminated plate element consisting of n layers with thickness h is shown in
Fig. 1.

The in-plane strain vector e ¼ ½�x �y �xy�
T can be rewritten as

e ¼

uo;x

vo;y

uo;y þ vo;x

2
64

3
75þ z

yx;x

yy;y

yx;y þ yy;x

2
64

3
75 ¼ em þ zeb (2)

and the transverse shear strain vector as

c ¼ ½gxz gyz�
T ¼ ½yx � w;x yy � w;y�

T. (3)

For an anisotropic laminated plate, the stress and resultant constitutive relationship are expressed as follows:

rp ¼
N

M

� �
¼

A B

B D

� �
em

eb

( )
¼ Cpep, (4)
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Fig. 1. A quadrilateral laminated plate element consisting of n layers.
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T ¼
k2
1C̄0

55 k1k2C̄
0
45

k1k2C̄
0
45 k2

2C̄0
44

" #
gxz

gyz

( )
¼ Csc, (5)

where N ¼ ½Nx Ny Nxy�
T, M ¼ ½Mx My Mxy�

T, T ¼ ½Qx Qy�
T are the membrane force vector, the bending

moment vector and the transverse shear force vector, respectively; k2
1, k2

2 are shear correction factors (SCFs)
which can be estimated by using special methods [15–17]; A, B, D, C are matrices of extensional stiffness,
bending–extensional coupling stiffness, bending stiffness and transverse shearing stiffness, respectively,
defined as

ðAij ;Bij ;DijÞ ¼

Z h=2

�h=2
ð1; z; z2ÞQ̄ij dz; i; j ¼ 1; 2; 6,

C0
ij ¼

Z h=2

�h=2
Q̄ij dz; i; j ¼ 4; 5, (6)

where Q̄ij are the elastic constants with respect to the global x-axis and their detailed definitions can be found
in Ref. [14].

Base on the FSDT, the finite element solution u of a displacement model for laminated plates is
approximated as

u ¼

u

v

w

yx

yy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼
Xnp

i¼1

Ni 0 0 0 0

0 Ni 0 0 0

0 0 Ni 0 0

0 0 0 Ni 0

0 0 0 0 Ni

2
6666664

3
7777775
qi, (7)

where np (np ¼ 4 in this case) is the total number of nodes of an element, qi ¼ ½ui vi wi yxi yyi�
T is the nodal

displacement vector and Ni ¼
1
4 ð1þ xixÞð1þ ZiZÞ is the shape function of the four-node serendipity element.

The corresponding approximation of membrane, bending and shear strain of Eq. (4) can be expressed in the
following form:

ep ¼
em

eb

( )
¼

Bm

Bb

" #
q ¼ Bpq, (8)

c ¼
gxz

gyz

( )
¼ Bsq, (9)
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Bm ¼

Ni;x 0 0 0 0

0 Ni;y 0 0 0

Ni;y Ni;x 0 0 0

0
B@

1
CA; Bb ¼

0 0 0 Ni;x 0

0 0 0 0 Ni;y

0 0 0 Ni;y Ni;x

0
B@

1
CA, (10)

Bs ¼
0 0 Ni;x Ni 0

0 0 Ni;y 0 Ni

 !
. (11)

The element stiffness matrix can be written based on the minimum potential principle as

Ke ¼ Ke
mb þ Ke

s ¼

Z
Oe

BT
pCpBp dOþ

Z
Oe

BT
s CsBs dO. (12)

By using Hamilton’s principle, the equation of motion of an element can be obtained as

Me €qþ Keq ¼ 0, (13)

which leads to the following eigenvalue equation:

ðKe � o2MeÞq ¼ 0, (14)

where the element mass matrix is defined by

Me ¼

Z
Oe

NT
mmNm dO, (15)

in which

Nm ¼

Ni 0 0 0 0

0 Ni 0 0 0

0 0 Ni 0 0

0 0 0 Ni 0

0 0 0 0 Ni

2
6666664

3
7777775
; m ¼ rh

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0
h2

12
0

0 0 0 0
h2

12

2
66666666664

3
77777777775
. (16)

3. Strain smoothing approach for finite element method

3.1. Smoothed membrane-bending strain approximation

The membrane-bending strains at an arbitrary point xC can be obtained by using following strain
smoothing operation:

~epðxCÞ ¼

Z
OC

epðxÞFðx� xCÞdO, (17)

where ep is the membrane-bending strain obtained from displacement compatibility condition as given in
Eq. (8); OC is the smoothing cell domain on which the smoothing operation is performed (OC may be an entire
element or part of an element as shown in Fig. 2, depending on the stability analysis [10,11]); F is a given
smoothing function that satisfies at least unity property

R
OC

FdO ¼ 1 and is defined as

Fðx� xCÞ ¼
1=AC ; x 2 OC ;

0; xeOC ;

(
(18)

in which AC ¼
R
OC

dO is the area of the smoothing cell (subcell).
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Fig. 2. Subdivision of an element into smoothing cells (nc) and the values of shape functions at nodes.
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Substituting F into Eq. (17) and applying the divergence theorem, one can get a smoothed membrane-
bending strains as

~epðxCÞ ¼
~emðxCÞ

~ebðxCÞ

( )
¼

1

2AC

R
GC
ðuinj þ ujniÞdGR

GC
ðyinj þ yjniÞdG

8<
:

9=
;, (19)

where GC is the boundary of the smoothing cell.
Introducing the finite element approximation of u into Eq. (7) gives

~epðxCÞ ¼
Xnc

i¼1

½ ~BmiðxCÞ ~BbiðxCÞ�
Tqi ¼

Xnc

C¼1

~B
C

p ðxCÞq, (20)

where

~B
C

piðxCÞ ¼
1

AC

Z
GC

Ninx 0 0 0 0

0 Niny 0 0 0

Niny Ninx 0 0 0

0 0 0 Ninx 0

0 0 0 0 Niny

0 0 0 Niny Ninx

0
BBBBBBBBB@

1
CCCCCCCCCA

dG. (21)

If one Gaussian point is used to evaluate Eq. (21) along each line segment of the boundary GC
i of OC , Eq. (21)

can be transformed as follows:

~B
C

piðxCÞ ¼
1

AC

Xnb

b¼1

Niðx
G
b Þ

nx 0 0 0 0

0 ny 0 0 0

ny nx 0 0 0

0 0 0 nx 0

0 0 0 0 ny

0 0 0 ny nx

0
BBBBBBBBB@

1
CCCCCCCCCA

lC
b , (22)

where xG
b and lC

b are the midpoint (Gauss point) and the length of GC
b , respectively, and nb is the total number

of edges of each smoothing cell.
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3.2. Transverse shear strains of the element

The shear strains are approximated with independent interpolation fields in the natural coordinate system
[13] as

gx

gy

" #
¼ J�1

gx
gZ

" #
¼ J�1N̂

gA
Z

gB
x

gC
Z

gD
x

2
666664

3
777775, (23)

in which

N̂ ¼
1

2

ð1� xÞ 0 ð1þ xÞ 0

0 ð1� ZÞ 0 ð1þ ZÞ

" #
, (24)

J is the Jacobian matrix and the midside nodes A, B, C, D are shown in Fig. 1. Expressing gA
Z , g

C
Z and gB

x , g
D
x in

terms of the discretized fields u, we obtain the shear matrix

B̄si ¼ J�1
0 0 Ni;x �b12

i Ni;x b11
i Ni;x

0 0 Ni;Z �b22
i Ni;Z b21

i Ni;Z

" #
, (25)

where

b11
i ¼ xix

M
;x ; b12

i ¼ xiy
M
;x ; b21

i ¼ Zix
L
;Z; b22

i ¼ Ziy
L
;Z, (26)

in which xi 2 f�1; 1; 1;�1g; Zi 2 f�1;�1; 1; 1g and ði;M;LÞ 2 fð1;B;AÞ; ð2;B;CÞ; ð3;D;CÞ; ð4;D;AÞg. The
element stiffness matrix in Eq. (12) can be transformed as follows:

~Ke ¼ ~Ke
mb þ K̄e

s ¼
Xnc

C¼1

~BT
pCCp

~BpCAC þ

Z
Oe

B̄T
s CsB̄s dO. (27)

Finally, the linear equation of motion in Eq. (14) can be rewritten as

ð ~Ke � o2MeÞq ¼ 0, (28)

In Eq. (27), the shear term K̄e
s is still computed by 2� 2 Gauss quadrature while the element bending stiffness

~Ke
mb is computed by one Gaussian point along each line segment of the smoothing cells of the element. For

simplicity, two smoothing cells ðnc ¼ 2Þ as shown in Fig. 2 are used for calculating the smoothed membrane-
bending stiffness matrix of the element. This forms the basis of a new four-node quadrilateral element named
MISQ20 (mixed interpolation smoothing quadrilateral element with 20 degree-of-freedom, dof) for analysis of
laminated plates. For analysis of laminated shells using MISQ20 flat element, a drilling dof yz (inplane
rotation) will be added to each node for assembling the stiffness matrices and the total dofs will be 24. To
avoid rank deficiency of the element stiffness matrix, the fictitious stiffness associated with the drilling dof is
taken to be equal to 1=1000 of the maximum diagonal value of the element stiffness matrix.
4. Numerical results and discussions

In this section, a number of numerical examples are presented to demonstrate the performance of the
MISQ20 element in the analysis of free vibration of laminated plates/shells. Particular plate/shell structures
with various boundary conditions, span-to-thickness ratios and modulus ratios (the degree of orthotropy) are
analyzed. In all examples, the material properties are assumed to be the same in all the layers and the fiber
orientations may be different among the layers. The ply angle of each layer is measured from the global x-axis
to the fiber direction. All layers have the same thickness and the mass density r is taken to be uniform in
the thickness direction. Unless otherwise specified, SCFs k2

1 ¼ k2
2 ¼ p2=12 are used for all computations.
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The following material parameters of a layer are used in all plate examples E1=E2 ¼ 10, 20, 30 or 40;
G12 ¼ G13 ¼ 0:6E2; G23 ¼ 0:5E2; n12 ¼ n13 ¼ n23 ¼ 0:25; r ¼ 1.

4.1. Square laminated plates

This section deals with cross-ply laminated square plates with various span-to-thickness ratios, number of
layers, boundary conditions and lay-up stacking sequences. A typical representative sketch of a mesh of
14� 14 used in these analyses is shown in Fig. 3.

4.1.1. Convergence study and the effect of modulus ratios

A simply supported four-layer cross-ply ½0=90=90=0� square laminated plate is chosen to study the
convergence of the present method using MISQ20 element. The span-to-thickness ratio of the plate a=h is
taken to be 5 in the computation. Table 1 shows the convergence and comparison of the normalized
fundamental frequencies of the present method with other solutions for various degrees of orthotropy of the
individual layers (E1=E2 ratio). It is found that the MISQ20 element yields not only relatively accurate results
in a wide range of E1 to E2 ratios but also rapid convergence as shown in Fig. 4a. The effect of various
modulus ratios of E1=E2 on the accuracy of the fundamental frequency is also displayed in Fig. 4b. It can be
seen that the present results are in good agreement with exact solutions [14,18] and closer to MLSDQ’s
solutions by Liew et al. [5] than RBF’s results of Ferreira et al. [7].

4.1.2. Mesh distortion

The influence of mesh distortion is studied in this section. The plate of the first example (Section 4.1.1) is
analyzed again using distorted element created by irregular interior nodes. These interior nodes are derived
Fig. 3. Geometry and discretization of square laminated plates.

Table 1

Simply supported cross-ply ½0=90=90=0� square plate: convergence of normalized fundamental frequencies and comparison with other

solutions (o� ¼ ðoa2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
, a=h ¼ 5)

Model Mesh E1=E2

10 20 30 40

MISQ20 6� 6 8.4443 9.7149 10.4729 11.0001

10� 10 8.3384 9.6010 10.3548 10.8792

12� 12 8.3203 9.5815 10.3346 10.8585

14� 14 8.3094 9.5698 10.3224 10.8471

MLSDQ [5] 8.2924 9.5613 10.320 10.849

RBF [7] 8.3101 9.5801 10.349 10.864

Exact [18,14] 8.2982 9.5671 10.326 10.854
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Fig. 4. Square cross-ply ½0=90=90=0� laminated plate: (a) convergence of the present method and (b) effect of modulus ratios on the

accuracy of fundamental frequencies.

s = 0.2 s = 0.3 s = 0.4

Fig. 5. Typical irregular meshes with various distortion factor s.
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from a set of regular nodes by using a controlling distortion factor s. Thus, the coordinates of an irregular
mesh are obtained by the following expressions:

x0 ¼ xþ rcsDx,

y0 ¼ yþ rcsDy, (29)

where rc is a computer-generated random number between �1:0 and 1:0, Dx;Dy are initial regular element
sizes in the x- and y-directions, respectively and s 2 ½0; 0:4� is used to control the shapes of the distorted
elements: the bigger value of s, the more irregular the shape of generated elements. Typical irregular meshes of
the analysis are shown in Fig. 5.

The effect of the mesh distortion on the fundamental frequency of the plate obtained by the present method
is shown in Table 2 and Fig. 6. It is found that the accuracy of the fundamental frequencies associated with
irregular mesh decreases in comparison with regular meshes. However, the deterioration is very small and the
overall performance is insensitive to mesh distortion as the maximum error of frequency is below 0.3% (in the
case of E1=E2 ¼ 10). For the cases of E1=E2 ¼ 30 and 40, Fig. 6 indicates that the error at some s could
become even smaller than those at s ¼ 0 (regular mesh).



ARTICLE IN PRESS

Table 2

Simply supported cross-ply ½0=90=90=0� square plate: effect of mesh distortion on the normalized fundamental frequencies

(o� ¼ ðoa2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
, a=h ¼ 5)

E1=E2 s ¼ 0 s ¼ 0:1 s ¼ 0:2 s ¼ 0:3 s ¼ 0:4

40 10.8471 10.8476 10.8495 10.8528 10.8597

30 10.3224 10.3239 10.3257 10.3283 10.3354

20 9.5698 9.5712 9.5728 9.5749 9.5820

10 8.3094 8.3108 8.3125 8.3140 8.3207
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Distortion ratio s

Fig. 6. Square cross-ply ½0=90=90=0� laminated plate: effect of mesh distortion on the accuracy of the fundamental frequency.

Table 3

Simply supported cross-ply ½0=90=90=0� square plate with various a=h ratios: convergence of normalized fundamental frequencies and

comparison with other solutions (o� ¼ ðoa2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
, E1=E2 ¼ 40)

Model a=h

5 10 20 25 50 100

MISQ20 6� 6 11.0001 15.4187 18.0504 18.4839 19.1221 19.2939

10� 10 10.8792 15.2201 17.7903 18.2122 18.8325 18.9992

14� 14 10.8461 15.1658 17.7192 18.1380 18.7535 18.9189

p-Ritz [20] 10.8550 15.1434 17.6583 18.0718 18.6734 18.8359

RBF-pseudospectral [8] 10.8074 15.1007 17.6338 18.0490 18.6586 18.8223

Reddy and Phan [19] 10.9891 15.2689 17.6669 18.0490 18.4624 18.7561

Cho et al. [23] 10.673 15.066 17.535 18.054 18.670 18.835

Local theory [21] 10.682 15.069 17.636 18.055 18.670 18.835

Global theory [22] 10.6876 15.0721 17.6369 18.0557 18.6702 18.8352

Global-local theory [24] 10.7294 15.1658 17.8035 18.2404 18.9022 19.1566
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4.1.3. Effect of span-to-thickness ratio

This section deals with the effect of the span-to-thickness ratio (a=h) on the fundamental frequency of a
simply supported square cross-ply plate made of material having E1=E2 ¼ 40. Table 3 presents a convergence
study on the normalized fundamental frequency. The present numerical results are comparable with those of
Reddy and Phan [19] who used higher-order shear deformation theory, Liew [20] who used a p-Ritz solution,
Wu et al. [21] who used local higher-order theory, Matsunaga [22] who used global higher-order theory, Striz
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et al. [23] who used higher-order individual-layer theory and Zhen et al. [24] who used global–local higher-
order theory. However, it can be seen that the present results are in closer agreement with results of Liew than
other methods cited here. From Table 3, it is also noticed that the span-to-thickness ratio has a considerable
effect on the fundamental frequency of plates at lower a=h ratios. At higher a=h ratios (a=h425), the influence
on the fundamental frequency is minor.

4.1.4. Effect of lay-up sequence and fiber orientation

To investigate the effect of lay-up sequence and fiber orientation, this section reports the analysis of two
composite plates with lamination sequence ½y=0=0=y� and ½0=y=y=0� with simply supported (SSSS) and
clamped (CCCC) edges. The span-to-thickness ratio of the plate a=h ¼ 100 and modulus ratio E1=E2 ¼ 10 are
used in the computation. Fig. 7 shows the effects of both fiber orientation and lay-up sequence on the
fundamental frequencies. It is found that there is symmetry for the orientation angle of 45� in both cases of
simply supported and clamped conditions. Moreover, in the case of SSSS edge conditions, the ½y=0=0=y�
lamination results in a higher fundamental frequencies than the corresponding ones for the ½0=y=y=0�
sequence. In the case of CCCC edge conditions, the behavior of the fundamental frequencies is opposite to the
above SSSS results. It appears that, in both cases, the fundamental frequencies has an extremum at ply angle
y ¼ 45�.

4.1.5. Influence of mixed boundaries and span-to-thickness ratio

The influence of the mixed boundary conditions and span-to-thickness ratio is now considered. The plate is
simply supported along the edges parallel to the x-axis while the other edges have simply supported (S),
clamped (C) or free (F) boundary conditions. The notation SS, SC, CC, FF, FS and FC refer to the boundary
conditions of two edges parallel to the y-axis only. The three layer cross-ply ½0=90=0� square plate is analyzed
with E1 ¼ 40E2 and a 14� 14 mesh as indicated in Fig. 3. Table 4 contains the normalized fundamental
frequencies for various span-to-thickness ratios obtained by the present method and other solutions of Liew
et al. [5] using MLSDQ method, RBF’s results by Ferreira et al. [7] and exact solutions [14,18]. It can be seen
that the accuracy of the present method compares very well with exact solutions and other numerical results.

Furthermore, the comparison of the first five natural frequencies with other methods for a clamped three-
layer cross-ply ½0=90=0� square plate is also presented in Table 5. The first four mode shapes obtained by the
present method are also depicted in Fig. 8. It is found that the present results in general indicate good
agreement with other cited solutions.
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Table 4

Cross-ply ½0=90=0� square plate with various mixed boundaries and span-to-thickness ratios: comparison of normalized fundamental

frequencies with other solutions (o� ¼ ðoa2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
, E1=E2 ¼ 40)

a=h Model SS SC CC FF FS FC

5 MISQ20 10.2780 10.6280 11.2387 4.0717 4.5613 5.9370

(�0.117%) (�0.169%) (�0.242%) (0.461%) (0.381%) (0%)

RBF [7] 10.307 10.658 11.274 – – –

(0.165%) (0.113%) (0.071%) – – –

MLSDQ [5] 10.290 10.647 11.266 4.054 4.545 5.938

(0%) (0.009%) (0%) (0.025%) (0.022%) (0.017%)

Exact [18,14] 10.290 10.646 11.266 4.053 4.544 5.937

10 MISQ20 14.7823 17.1806 19.6614 4.3679 4.9401 7.3372

(0.110%) (0.033%) (�0.039%) (0.573%) (0.531%) (0.084%)

RBF [7] 14.804 17.199 19.678 – – –

(0.257%) (0.139%) (0.046%) – – –

MLSDQ [5] 14.767 17.176 19.669 4.343 4.917 7.333

(0.007%) (0.006%) (0%) (0%) (0.061%) (0.028%)

Exact [18,14] 14.766 17.175 19.669 4.343 4.914 7.331

100 MISQ20 18.9095 28.4750 40.5937 4.4835 5.1007 8.2665

(0.098%) (�0.091%) (�0.366%) (0.594%) (0.487%) (�0.030%)

RBF [7] 18.355 28.165 40.234 – – –

(�2.837%) (�1.179%) (�1.249%) – – –

MLSDQ [5] 18.769 28.164 40.004 4.439 5.301 8.451

(�0.646%) (�1.182%) (�1.814%) (�0.404%) (4.433%) (2.201%)

Exact [18,14] 18.891 28.501 40.743 4.457 5.076 8.269

The values in parentheses correspond to relative error percentage when compared to exact solution.

Table 5

Clamped cross-ply ½0=90=0� square plate: comparison of the first five natural frequencies with other solutions

a=h Model Mode

1 2 3 4 5

5 MISQ20 4.4671 6.7365 7.7706 8.7678 9.2988

p-Ritz [20] 4.447 6.642 7.700 9.185 9.738

Global-local [24] 4.540 6.524 8.178 9.473 9.492

10 MISQ20 7.4542 10.5909 14.0808 16.0497 16.0868

p-Ritz [20] 7.411 10.393 13.913 15.429 15.806

MLSDQ [6] 7.432 10.399 13.958 15.467 15.838

Global-local [24] 7.484 10.207 14.340 14.863 16.070

Jian et al. [25] 7.451 10.451 13.993 15.534 15.896

20 MISQ20 11.0454 14.2988 21.4609 23.6389 25.4605

p-Ritz [20] 10.953 14.028 20.388 23.196 24.978

Global-local [24] 11.003 14.064 20.321 23.498 25.350

Jian et al. [25] 11.015 14.152 20.691 23.323 25.142

100 MISQ20 14.6199 17.7013 25.5625 38.2411 39.3269

p-Ritz [20] 14.666 17.614 24.511 35.532 39.157

MLSDQ [6] 14.674 17.668 24.594 35.897 39.625

Global-local [24] 14.601 17.812 25.236 37.168 38.528

Jian et al. [25] 14.583 17.762 25.004 36.644 38.073
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4.2. Skew laminated plates

This section deals with five-layer symmetric cross-ply and angle-ply skew laminated plates. Simply
supported and clamped edges are considered with various skew angles a from 0� to 60�. The span-to-thickness
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Fig. 8. Mode shapes for clamped cross-ply ½0=90=0� square plate (E1=E2 ¼ 40, a=h ¼ 10).

Fig. 9. Geometry and discretization of skew laminated plates.
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ratio a=h is taken to be 10 and the entire plate is modeled using 6� 6; 10� 10 and 14� 14 meshes.
A representative sketch of the 10� 10 mesh used in the analysis is displayed in Fig. 9.

Tables 6 and 7 present the normalized fundamental frequencies of the cross-ply ½90=0=90=0=90� with simply
supported and clamped edges, respectively, while Tables 8 and 9 show the normalized fundamental frequencies
of the angle-ply ½45=� 45=45=� 45=45� with simply supported and clamped boundaries. The results
calculated using MLSDQ method by Liew et al. [5], B-spline Rayleigh–Ritz method of Wang et al. [26] and
RBF of Ferreira et al. [7] are also listed for comparison. It can be seen that there is a good agreement between
the present results and other existing solutions for both cases of cross-ply and angle-ply laminates.



ARTICLE IN PRESS

Table 6

Simply supported cross-ply ½90=0=90=0=90� skew plate with various skew angles: convergence of fundamental frequencies and comparison

with other solutions (o� ¼ ðoa2
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
Þ=ðp2hÞ;E1=E2 ¼ 40; a=h ¼ 10)

Model Mesh a

0� 15� 30� 45� 60�

MISQ20 6� 6 1.6030 1.7267 2.1441 3.0021 4.7710

10� 10 1.5797 1.6977 2.0963 2.9141 4.6033

14� 14 1.5733 1.6896 2.0820 2.8855 4.5412

MLSDQ [5] 1.5709 1.6886 2.1026 2.8798 4.4998

RBF [7] 1.5791 1.6917 2.0799 2.8228 4.3761

B-spline [26] 1.5699 – 2.0844 2.8825 –

Table 7

Clamped cross-ply ½90=0=90=0=90� skew plate with various skew angles: convergence of fundamental frequencies and comparison with

other solutions (o� ¼ ðoa2
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
Þ=ðp2hÞ, E1=E2 ¼ 40, a=h ¼ 10)

Model Mesh a

0� 15� 30� 45� 60�

MISQ20 6� 6 2.4550 2.5528 2.8901 3.6260 5.2538

10� 10 2.4014 2.4958 2.8194 3.5200 5.0610

14� 14 2.3869 2.4803 2.7998 3.4893 4.9989

MLSDQ [5] 2.3790 2.4725 2.7927 3.4723 4.9430

RBF [7] 2.4021 2.4932 2.8005 3.4923 4.9541

B-spline [26] 2.3820 – 2.7921 3.4738 –

Table 8

Simply supported angle-ply ½45=� 45=45=� 45=45� skew plate with various skew angles: convergence of fundamental frequencies and

comparison with other solutions (o� ¼ ðoa2
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
Þ=ðp2hÞ, E1=E2 ¼ 40, a=h ¼ 10)

Model Mesh a

0� 15� 30� 45� 60�

MISQ20 6� 6 1.8768 1.9255 2.1546 2.7185 4.1758

10� 10 1.8491 1.8969 2.1093 2.6286 4.0249

14� 14 1.8413 1.8889 2.0955 2.5672 3.9718

MLSDQ [5] 1.8248 1.8838 2.0074 2.5028 4.0227

RBF [7] 1.8357 1.8586 2.0382 2.4862 3.8619

B-spline [26] 1.8792 – 2.0002 2.4788 –
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The numerical accuracy is slightly dependent on the skew angle a (accuracy deteriorates with increasing a) but
insensitive to lay-up sequence. The first four mode shapes obtained by the present methods for CCCC and
SSSS cases of the ½90=0=90=0=90� laminated plates are also depicted in Figs. 10 and 11, respectively.

4.3. Circular laminated plates

A circular symmetric four-layer ½y=� y=� y=y� laminated plate with a diameter D and a thickness h as
shown in Fig. 12 is analyzed. The span-to-thickness ratio a=h is taken to be 10 in the computation. Two types
of boundary conditions, simply supported (SSSS) and clamped (CCCC) with various fiber orientation angles
y ¼ 0�; 15�; 30�; 45� are considered.
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Table 9

Clamped angle-ply ½45=� 45=45=� 45=45� skew plate with various skew angles: convergence of fundamental frequencies and comparison

with other solutions (o� ¼ ðoa2
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
Þ=ðp2hÞ, E1=E2 ¼ 40, a=h ¼ 10)

Model Mesh a

0� 15� 30� 45� 60�

MISQ20 6� 6 2.3551 2.4242 2.7566 3.5013 5.1549

10� 10 2.3045 2.3713 2.6892 3.3977 4.9605

14� 14 2.2908 2.3570 2.6708 3.3683 4.8982

MLSDQ [5] 2.2787 2.3504 2.6636 3.3594 4.8566

RBF [7] 2.3324 2.3962 2.6981 3.3747 4.8548

B-spline [26] 2.2857 – 2.6626 3.3523 –
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Fig. 10. Mode shapes for clamped cross-ply ½90=0=90=0=90� skew plate (a ¼ 30�, a=h ¼ 10, E1=E2 ¼ 40).
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The effect of the ply angle y on the normalized fundamental frequency of the simply supported and clamped
circular laminated plate is presented in Table 10. The natural frequencies of the first six modes in the case of
clamped edge conditions are also presented in Table 11. It is observed that the numerical results obtained by
the present method are comparable with Liew’s results [5].
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Table 10

Circular 4-layer ½y=� y=� y=y� laminated plates with various boundary conditions and ply angles: comparison of fundamental

frequencies with other solutions (o� ¼ ðoa2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
, E1=E2 ¼ 40; a=h ¼ 10)

Model B.C y

0 15 30 45

MISQ20 SSSS 16.168 16.448 16.924 17.162

MLSDQ [5] 16.167 16.475 16.928 17.119

MISQ20 CCCC 22.123 22.698 24.046 24.766

MLSDQ [5] 22.211 22.774 24.071 24.752

Table 11

Clamped circular 4-layer ½y=� y=� y=y� laminated plate: comparison of the normalized natural frequencies of the first six modes

(o� ¼ ðoa2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
, E1=E2 ¼ 40; a=h ¼ 10)

y Model Mode

1 2 3 4 5 6

0 MISQ20 22.123 29.768 41.726 42.805 50.756 56.950

MLSDQ [5] 22.211 29.651 41.101 42.635 50.309 54.553

15 MISQ20 22.698 31.568 43.635 44.318 53.468 60.012

MLSDQ [5] 22.774 31.455 43.350 43.469 52.872 57.386

30 MISQ20 24.046 36.399 44.189 52.028 57.478 67.099

MLSDQ [5] 24.071 36.153 43.968 51.074 56.315 66.220

45 MISQ20 24.766 39.441 43.817 57.907 57.945 66.297

MLSDQ [5] 24.752 39.181 43.607 56.759 56.967 65.571
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4.4. Multi-layer cylindrical shells

The cross-ply laminated cylindrical panel with a radius R ¼ 100 and a side length L ¼ 20 subjected to
simply supported boundaries is studied. The total thickness of the panel is h ¼ 0:2. All layers have equal
thickness and are made of the same material: E1=E2 ¼ 25, G12 ¼ G13 ¼ 0:5E2, G23 ¼ 0:2E2, n12 ¼ n13 ¼
n23 ¼ 0:25, r ¼ 1. The SCFs are assumed to be 5/6. Three kinds of lay-up sequence: ½0=90�, ½0=90=0� and
½0=90=90=0� are considered. Considering only doubly symmetric modes, a quadrant designated as ABCD as
shown in Fig. 13 is modeled. The 4� 4; 6� 6 and 8� 8 meshes are used in computing the fundamental
frequencies associated with the doubly symmetric modes. The convergence study of the normalized
fundamental frequency is presented in Table 12. The present results are also compared with other numerical
solutions such as results of Liu and To [27] using layer-wise shell element, of Jayasankar [28] using nine-node
degenerated shell element and the analytical solution by Reddy [29].

It can be seen that the accuracy of the present element is compared very favorably with other elements and
the method is also convergent with mesh refinement. The present element can provide accurate prediction of
the solution with much reduced degrees of freedom and its performance with respect to analytical solution is
excellent.

4.5. Multi-layer spherical shell

A clamped nine-layered cross-ply ½0=90=0=90=0=90=0=90=0� laminated spherical panel as shown in Fig. 14 is
considered. The panel has a radius R ¼ 10 and a side length a ¼ 1. The total thickness of the panel is
h ¼ 0:01. All layers are of equal thickness and same material properties: E1 ¼ 2:0685� 1011, E2 ¼ E1=40,
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Table 12

Simply supported laminated cylindrical shells: convergence of normalized fundamental frequencies o� ¼ ðoL2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
for doubly

symmetric modes and comparison with other solutions

Model Mesh Lay-up

½0=90� ½0=90=0� ½0=90=90=0�

MISQ20 4� 4 17.061 20.575 20.694

6� 6 16.833 20.340 20.461

8� 8 16.736 20.240 20.367

(0.408%) (�0.452%) (0.029%)

Layer-wise [27] 8� 8 17.390 20.960 20.960

(4.332%) (3.089%) (2.942%)

9-node shell [28] 5� 5 17.7 – –

(6.192%) – –

Analytic [29] 16.668 20.332 20.361
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G12 ¼ G13 ¼ 0:5E2, G23 ¼ 0:6E2, n12 ¼ 0:25 and r ¼ 1605. The SCFs are k2
1 ¼ k2

2 ¼ 5=6. Three different finite
element meshes are used 6� 6; 10� 10, and 14� 14 for modeling a full sphere shell.

Table 13 gives the first four normalized natural frequencies obtained by the present method in comparison
with the solution of Jayasankar [28] using nine-node degenerated shell element. It can be seen that the present
results agree well with the solutions given by Jayasankar.

5. Conclusions

In this paper, the MISQ20 element is further developed and successfully applied to analyze the free
vibration of laminated plate/shell structures within the framework of the first-order shear deformation plate
theory (FSDT). Several numerical investigations are conducted and the obtained results are in excellent
agreement with other available numerical and analytic solutions. It is found that the present element is
relatively simple but yields slightly better accuracy for thin to thick laminated plates/shells with various
boundary conditions, modulus ratios and stacking sequences. Since the integration is done on the element
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Table 13

Clamped 9-layer ½ð0=90Þ2=0s� cross-ply spherical shell: comparison the normalized fundamental frequencies o� ¼ ðoa2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E2

p
with

other solutions

Model Mesh Mode 1 Mode 2 Mode 3 Mode 4

MISQ20 6� 6 69.61 98.25 118.15 136.05

10� 10 67.94 88.24 104.45 119.73

14� 14 67.51 86.00 101.27 115.88

9-node shell [28] 15�15 67.43 84.16 99.71 113.70

Fig. 14. Geometry data of a spherical shell.
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boundaries for the bending and membrane terms, the present element remains accurate even when it is highly
distorted.
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